Survey Paper: A survey of large-scale reasoning on the Web of data
Title: "A survey of large-scale reasoning on the Web of data"
Authors: Grigoris Antoniou, Sotiris Batsakis, Raghava Mutharaju, Jeff Z. Pan, Guilin Qi, Ilias Tachmazidis, Jacopo Urbani and Zhangquan Zhou
Link to online version: The Knowledge Engineering Review, vol. 33, p. e21, 2018
Abstract: As more and more data is being generated by sensor networks, social media and organizations, the Web interlinking this wealth of information becomes more complex. This is particularly true for the so-called Web of Data, in which data is semantically enriched and interlinked using ontologies. In this large and uncoordinated environment, reasoning can be used to check the consistency of the data and of associated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insights from the data. However, reasoning approaches need to be scalable in order to enable reasoning over the entire Web of Data. To address this problem, several high-performance reasoning systems, which mainly implement distributed or parallel algorithms, have been proposed in the last few years. These systems differ significantly; for instance in terms of reasoning expressivity, computational properties such as completeness, or reasoning objectives. In order to provide a first complete overview of the field, this paper reports a systematic review of such scalable reasoning approaches over various ontological languages, reporting details about the methods and over the conducted experiments. We highlight the shortcomings of these approaches and discuss some of the open problems related to performing scalable reasoning.
Authors: Grigoris Antoniou, Sotiris Batsakis, Raghava Mutharaju, Jeff Z. Pan, Guilin Qi, Ilias Tachmazidis, Jacopo Urbani and Zhangquan Zhou
Link to online version: The Knowledge Engineering Review, vol. 33, p. e21, 2018
Abstract: As more and more data is being generated by sensor networks, social media and organizations, the Web interlinking this wealth of information becomes more complex. This is particularly true for the so-called Web of Data, in which data is semantically enriched and interlinked using ontologies. In this large and uncoordinated environment, reasoning can be used to check the consistency of the data and of associated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insights from the data. However, reasoning approaches need to be scalable in order to enable reasoning over the entire Web of Data. To address this problem, several high-performance reasoning systems, which mainly implement distributed or parallel algorithms, have been proposed in the last few years. These systems differ significantly; for instance in terms of reasoning expressivity, computational properties such as completeness, or reasoning objectives. In order to provide a first complete overview of the field, this paper reports a systematic review of such scalable reasoning approaches over various ontological languages, reporting details about the methods and over the conducted experiments. We highlight the shortcomings of these approaches and discuss some of the open problems related to performing scalable reasoning.